# COT 3100 - Homework 1 *Michael Akinyemi* *Tue/Thu 9:00 AM* ### Problem 1: Truth Tables (15 pts) 1. $(p \land q) \lor \neg r$ | $p$ | $q$ | $r$ | $p \land q$ | $\neg r$ | $(p \land q) \lor \neg r$ | | --- | --- | --- | :---: | :---: | :---: | | T | T | T | T | F | T | | T | T | F | T | T | T | | T | F | T | F | F | F | | T | F | F | F | T | T | | F | T | T | F | F | F | | F | T | F | F | T | T | | F | F | T | F | F | F | | F | F | F | F | T | T | 2. $\neg(p \lor q) \land (r \oplus s)$ | $p$ | $q$ | $r$ | $s$ | $p \land q$ | $\neg (p \land q)$ | $r \oplus s$ | $\neg (p \land q) \lor (r \oplus s)$ | | --- | --- | --- | --- | :---: | :---: | :---: | :---: | | T | T | T | T | T | F | F | F | | T | T | T | F | T | F | T | T | | T | T | F | T | T | F | T | T | | T | T | F | F | T | F | F | F | | T | F | T | T | F | T | F | T | | T | F | T | F | F | T | T | T | | T | F | F | T | F | T | T | T | | T | F | F | F | F | T | F | T | | F | T | T | T | F | T | F | T | | F | T | T | F | F | T | T | T | | F | T | F | T | F | T | T | T | | F | T | F | F | F | T | F | T | | F | F | T | T | F | T | F | T | | F | F | T | F | F | T | T | T | | F | F | F | T | F | T | T | T | | F | F | F | F | F | T | F | T | 3. $[(q \oplus r) \land s] \implies p$ | $p$ | $q$ | $r$ | $s$ | $q \oplus r$ | $(q \oplus r) \land s$ | $[(q \oplus r) \land s] \implies p$ | | --- | --- | --- | :---: | :---: | :---: | :---: | | T | T | T | T | F | F | T | | T | T | T | F | F | F | T | | T | T | F | T | T | T | T | | T | T | F | F | T | T | T | | T | F | T | T | T | T | T | | T | F | T | F | T | T | T | | T | F | F | T | F | T | T | | T | F | F | F | F | F | T | | F | T | T | T | F | T | F | | F | T | T | F | F | F | F | | F | T | F | T | T | T | F | | F | T | F | F | T | T | F | | F | F | T | T | T | T | F | | F | F | T | F | T | T | F | | F | F | F | T | F | T | F | | F | F | F | F | F | F | T | ### Problem 2: Boolean Algebraic Laws (40 pts) > 1. Use Boolean algebraic laws to prove: > $[(p \implies q) \lor (p \implies r)] \iff [p \implies (q \lor r)]$ $ \begin{aligned} \\ \text{1. } & (p \implies q) \lor (p \implies r) && \text{Given} \\ \text{2. } & (\neg p \lor q) \lor (\neg p \lor r) && \text{2x Implication} \\ \text{3. } & \neg p \lor (q \lor r) && \text{Distributivity} \\ \text{4. } & p \implies (q \lor r) && \text{Implication} \end{aligned}$ > Use Boolean algebraic laws to prove: > $\neg[\neg(p \land q) \land (p \lor q)] \iff [(p \implies q) \land (q \implies p)]$ $ \begin{aligned} \\ \text{1. } & \neg[\neg(p \land q) \land (p \lor q)] && \text{Given} \\ \text{2. } & \neg[(\neg p \lor \neg q) \land (p \lor q)] && \text{De Morgan's} \\ \text{3. } & \neg(\neg p \lor \neg q) \lor \neg(p \lor q) && \text{De Morgan's} \\ \text{4. } & (\neg\neg p \land \neg\neg q) \lor (\neg p \land \neg q) && \text{2x De Morgan's} \\ \text{5. } & (p \land q) \lor (\neg p \land \neg q) && \text{Double Negation} \\ \text{6. } & [(p \land q) \lor \neg p] \land [(p \land q) \lor \neg q] && \text{Distributivity} \\ \text{7. } & [(p \lor \neg p) \land (q \lor \neg p)] \land [(p \lor \neg q) \land (q \lor \neg q)] && \text{2x Distributivity} \\ \text{8. } & [(T) \land (q \lor \neg p)] \land [(p \lor \neg q) \land (T)] && \text{2x Negation} \\ \text{9. } & (q \lor \neg p) \land (p \lor \neg q) && \text{2x Identity} \\ \text{10. } & (p \implies q) \land (q \implies p) && \text{2x Implication} \end{aligned}$ ### Problem 3: Disproof (10 pts) > To _disprove_ a conjecture you need only find one case - or _counter-example_ - where it is not true. **Disprove** that $[(p \land q) \implies r] \iff [(p \implies r) \land (q \implies r)]$. | $p$ | $q$ | $r$ | $p \land q$ | $(p \land q) \implies r$ | | --- | --- | --- | :---: | :---: | | T | T | T | T | T | | T | T | F | T | F | | T | F | T | F | T | | T | F | F | F | T | | F | T | T | F | T | | F | T | F | F | T | | F | F | T | F | T | | F | F | F | F | T | | $p$ | $q$ | $r$ | $p \implies r$ | $q \implies r$ | $(p \implies r) \land (p \implies r)$ | | --- | --- | --- | :---: | :---: | :---: | | T | T | T | T | T | T | | T | T | F | F | F | F | | T | F | T | T | T | T | | **T** | **F** | **F** | F | T | **F** | | F | T | T | T | T | T | | **F** | **T** | **F** | T | F | **F** | | F | F | T | T | T | T | | F | F | F | T | T | T | One case where this conjecture is false is *when p is true while q and r are false*. ### Problem 4: Inference - Verbal (15 pts) r = it was raining f = it was foggy s = the sailing race was held l = the livesaving demonstration was held t = the trophy was awarded > **Accepting the following premises:** > > 1. $(\neg r \lor \neg f) \implies (s \land l)$ > - “If it does not rain, or it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on.” > 2. $s \implies t$ > - “If the sailing race is held, then the trophy will be awarded.” > 3. $\neg t$ > - “The trophy was not awarded.” > > **Conclude that it rained.** $ \begin{aligned} \\ \text{4. } & \neg s && \text{Modus Tollens (2, 3)} \\ \text{5. } & \neg s \lor \neg l && \text{Disjunctive Amplification (4)} \\ \text{6. } & \neg (s \land l) && \text{De Morgan's (5)} \\ \text{7. } & \neg (\neg r \lor \neg f) && \text{Modus Tollens (1, 6)} \\ \text{8. } & \neg\neg r \land \neg\neg f && \text{De Morgan's (7)} \\ \text{9. } & r \land f && \text{2x Double Negation (8)} \\ \text{10. } & r && \text{Conjunctive Simplification (9)} \end{aligned}$ ### Problem 5: Inference - Symbolic (20 pts) > **Accepting the following premises:** > > 1. $(p \land t) \implies (r \lor s)$ > 2. $q \implies (u \land t)$ > 3. $u \implies p$ > 4. $\neg s$ > > **Conclude that $q \implies r$.** $ \begin{aligned} \\ \text{5. } & \neg q \lor (u \land t) && \text{Implication (2)} \\ \text{6. } & (\neg q \lor u) \land (\neg q \lor t) && \text{Distributive (5)} \\ \text{7. } & (q \implies u) \land (q \implies t) && \text{2x Implication (6)} \\ \text{8. } & q \implies u && \text{Conjunctive Simplification (7)} \\ \text{9. } & q \implies t && \text{Conjunctive Simplification (7)} \\ \text{10. } & q \implies p && \text{Syllogism (3, 8)} \\ \text{11. } & (q \implies p) \land (q \implies t) && \text{Conjunction (9, 10)} \\ \text{12. } & (\neg q \lor p) \land (\neg q \lor t) && \text{2x Implication (11)} \\ \text{13. } & \neg q \lor (p \land t) && \text{Distributivity (12)} \\ \text{14. } & q \implies (p \land t) && \text{Implication (13)} \\ \text{15. } & q \implies (r \lor s) && \text{Syllogism (1, 14)} \\ \text{16. } & \neg q \lor (r \lor s) && \text{Implication (15)} \\ \text{17. } & s \lor (\neg q \lor r) && \text{Associativity/Commutativity (16)} \\ \text{18. } & \neg s \implies (q \implies r) && \text{2x Implication (17)} \\ \text{19. } & q \implies r && \text{Modus Ponens (4, 18)} \end{aligned}$ attempt 1 notes: - if u is true then p must be true, this makes the conclusion of line 2 similar to the premise of line 1 - we know that s is false, so the conclusion of 1 is essentially just r (absorption?) - disjunctive syllogism with 1 and 4? attempt 2 notes: - implication law is useful for splitting up the conclusions of an implication like line 2 (*zipping/unzipping*), the opposite is also true to link together multiple implications which share a premise - lines 1-3 can be connected through by modifying connectives that have q (q → u → p) - unlike the steps with q → (p & t), the q → (r or s) doesn’t need to use distributivity (*aim to keep making lines shorter unless absolutely necessary*)