# COT 3100 - Homework 2 *Michael Akinyemi* *Tue/Thu 9:00 AM* ### Problem 1: Venn Diagrams (15) > Consider sets $A$, $B$, and $C$, and draw Venn diagrams for the following composite sets: > 1. $(A \cap B) \cup (C)$ ![[History of Microbiology.png|300]] --- > 2. $(\neg A) \cup (\neg B) \cup (\neg C)$ ![[History of Microbiology-1.png|300]] --- > 3. $A - (B \cap C)$ ![[History of Microbiology-2.png|300]] ### Problem 2: Proof of Laws (20) >Consider sets $A$ and $B$, and: > > 1. Prove the absorption law $A \cup (A \cap B) = A$ by universal generalization, applied twice to use the double-subset property. By the double-subset property, it suffices to show: - $A \cup (A \cap B) \subseteq A$ - $A \subseteq A \cup (A \cap B)$ **Case 1:** Show that $A \cup (A \cap B) \subseteq A$ Consider an arbitrary $x \in A \cup (A \cap B)$. By definition of union, $x \in A$ for all $x \in A \cup (A \cap B)$. Then by universal generalization with subset, $A \cup (A \cap B) \subseteq A$. **Case 2:** Show that $A \subseteq A \cup (A \cap B)$ Consider an arbitrary element $x \in A$ Without loss of generality, $x \in B$ or $x \notin B$. Consider each case - **Case 2.1:** $x \in B$ - From above, $x \in A$. So with $x \in B$, $x \in (A \cap B)$ by definition of intersection. - Then by definition of union, we have $x \in A \cup (A \cap B)$ - **Case 2.2:** $x \notin B$ - From above, $x \in A$. So with $x \not \in B$, $x \in (A \cap B)$ by definition of intersection. - Then by definition of union, we have $x \in A \cup (A \cap B)$ In either case, $x \in A \cup (A \cap B)$. Then by universal generalization with subset, $A \subseteq A \cup (A \cap B)$. Shown $A \cup (A \cap B) \subseteq A$ and $A \subseteq A \cup (A \cap B)$. By double-subset, $A \cup (A \cap B) = A$ as desired. --- > 2. Prove the associative law $A \cap (B \cap C) = (A \cap B) \cap C$ by membership table. | $A$ | $B$ | $C$ | $(B \cap C)$ | $A \cap (B \cap C)$ | $(A \cap B)$ | $(A \cap B) \cap C$ | | --- | --- | --- | :---: | :---: | :---: | :---: | | T | T | T | T | T | T | T | | T | T | F | F | F | T | F | | T | F | T | F | F | F | F | | T | F | F | F | F | F | F | | F | T | T | T | F | F | F | | F | T | F | F | F | F | F | | F | F | T | F | F | F | F | | F | F | F | F | F | F | F | ### Problem 3: Proof of Equalities (25) > 1. (5) Prove $(A \cup B) \subseteq (A \cup B \cup C)$ by universal generalization. Consider an arbitrary $x \in (A \cup B)$. By definition of union, we have two cases: **Case 1:** $x \in A$ If $x \in A$, then by definition of union $x \in (A \cup B \cup C)$. **Case 2:** $x \in B$ If $x \in B$, then by definition of union $x \in (A \cup B \cup C)$. In either case, $x \in (A \cup B \cup C)$. Then by universal generalization, $x \in (A \cup B \cup C)$ for any $x \in (A \cup B)$. Then by definition of subset, $(A \cup B) \subseteq (A \cup B \cup C)$. --- > 2. (5) Prove $(A \cap B \cap C) \subseteq (A \cap B)$ by universal generalization. Consider an arbitrary $x \in (A \cap B \cap C)$. By definition of intersection, we have $x \in A$, $x \in B$, and $x \in C$ Since $x \in A$ and $x \in B$, by definition of intersection we have $x \in (A \cap B)$ Then by universal generation $x \in (A \cap B)$ for any $x \in (A \cap B \cap C)$. Then by definition of subset, $(A \cap B \cap C) \subseteq (A \cap B)$. --- > 3. (5) Prove $(A - C) \cap (C - B) = \emptyset$ by membership table. | $A$ | $B$ | $C$ | $\emptyset$ | $(A-C)$ | $(C-B)$ | $(A-C) \cap (C-B)$ | | --- | --- | --- | --- | :---: | :---: | :---: | | T | T | T | F | F | F | F | | T | T | F | F | T | F | F | | T | F | T | F | F | T | F | | T | F | F | F | T | F | F | | F | T | T | F | F | F | F | | F | T | F | F | F | F | F | | F | F | T | F | F | T | F | | F | F | F | F | F | F | F | --- > 4. (10) Prove $(B-A) \cup (C - A) = (B \cup C) - A$ by universal generalization, applied twice to use the double-subset property. By the double-subset property, it suffices to show: - $(B-A) \cup (C - A) \subseteq (B \cup C) - A$ - $(B \cup C) - A \subseteq (B-A) \cup (C - A)$ **Case 1:** Show that $(B-A) \cup (C - A) \subseteq (B \cup C) - A$ Consider an arbitrary $x \in (B-A) \cup (C-A)$ By definition of relative complement, $x \in (B-A) \cup (C-A)$ **Case 2:** Show that $(B \cup C) - A \subseteq (B-A) \cup (C - A)$ Consider an arbitrary $x \in (B \cup C) - A$ By definition of intersection we have two cases: - **Case 2.1:** $x \in (B \cup C)$ - **Case 2.2:** $x \not \in A$ ### Problem 4: Set Equality Laws (30) >Consider sets $A$ and $B$, and use set equality laws to prove that: > $((A \cap B) \cup (A \cap \neg B) \cup (\neg A \cap B)) = (A \cup B)$ $ \begin{aligned} \\ \text{1. } & (A \cap B) \cup (A \cap \neg B) \cup (\neg A \cap B) && \text{Given} \\ \text{2. } & (A \cap (B \cup \neg B)) \cup (\neg A \cap B) && \text{Distributive} \\ \text{3. } & (A \cap U) \cup (\neg A \cap B) && \text{Negation} \\ \text{4. } & A \cup (\neg A \cap B) && \text{Identity} \\ \text{5. } & (A \cup \neg A) \cap (A \cup B) && \text{Distributive} \\ \text{6. } & U \cap (A \cup B) && \text{Negation} \\ \text{7. } &A \cup B && \text{Identity} \end{aligned}$ ### Problem 5: Disproof (10) > Show, any way you wish, that $(A - B) = (B - A)$ is not always true. **Proof by case:** Let $A = \{ a, b, c \}$ Let $B = \{ b, c \}$ $A-B = \{ a \}$ $B - A = \{ \}$ $\{ a \} \neq \{ \}$ Thus, it is shown that $A-B \neq B-A$ in this case