# COT 3100 - Homework 3
*Michael Akinyemi*
*Tue/Thu 9:00 AM*
### Problem 1: Division Review (10)
State the quotient and remainder when dividing $a$ by $b$ for each of the following examples:
1. $a = 147; b = 6$
- $q=24$
- $r=3$
2. $a = 12,345; b = 106$
- $q=116$
- $r=49$
3. $a = 77; b = 96$
- $q=0$
- $r=77$
4. $a = 421$; $b = 77$
- $q=5$
- $r=36$
5. $a = 176$; $b = 148$
- $q=1$
- $r=28$
### Problem 2: Greatest Common Divisor and Least Common Multiple (25)
Determine the GCD and LCM of:
1. $123$ and $67$
123 = 1(67) + 56
67 = 1(56) + 11
56 = 5(11) + 1
11 = 11(1) + 0
gcd(123, 67) = 1
---
2. $609$ and $377$
$609 = 1(377) + 232$
$377 = 1(232) + 145$
$232 = 1(145) + 87$
$145 = 1(87) + 58$
$87 = 1(58) + 29$
$58 = 2(29) + 0$
$gcd(609, 377) = 29$
---
3. $135$ and $198$
$198 = 1(135) + 63$
$135 = 2(63) + 9$
$63 = 7(9) + 0$
$gcd(135, 198) = 9$
---
4. $923$ and $7,238$
$7238 = 7(923) + 777$
$923 = 1(777) + 146$
$777 = 5(146) + 47$
$146 = 3(47) + 5$
$47 = 9(5) + 2$
$5 = 2(2) + 1$
$2 = 2(1) + 0$
$gcd(923, 7238) = 1$
### Problem 3: Modulo Rules (25)
Find the remainders when dividing a by b for each of the following examples. Don't use a calculator except for individual steps. You are required to show your work.
1. $a = 7^{15}$; $b = 5$
$7^{15} = 7 \cdot 7^{14}$
$= 7 \cdot (7^2)^7$
$= 7 \cdot 49^7$
$\equiv 2 \cdot 4 \cdot 4^6 \pmod 5$
$=2 \cdot 4 \cdot 4^6$
$=8 \cdot (4^2)^3$
$=8 \cdot 16^3$
$\equiv 3 \cdot 1^3 \pmod 5$
$r=3$
---
2. $a = 11^{21}$; $b = 7$
$11^{21} = 11 \cdot 11^{20}$
$=11 \cdot (11^2)^{10}$
$= 11 \cdot 121^{10}$
$\equiv 4 \cdot 2^{10} \pmod 7$
$=4 \cdot (2^2)^5$
$=4 \cdot 4^5$
$= 4 \cdot 4 \cdot (4^2)^2$
$=16 \cdot 16^2$
$\equiv 2 \cdot 2^2 \pmod 7$
$=8$
$\equiv 1 \pmod 7$
$r=1$
---
3. $a = 2^{22}$; $b = 13$
$2^{22}=(2^2)^{11}$
$=4^{11}$
$= 4 \cdot (4^2)^5$
$=4 \cdot 16^5$
$\equiv 4 \cdot 3^5 \pmod {13}$
$=4 \cdot 3 \cdot (3^2)^2$
$=12 \cdot 81$
$\equiv 12 \cdot 3$
$= 36$
$\equiv 10 \pmod {13}$
$r=10$
---
4. $a = 13^{30}$; $b = 11$
$13^{30}=(13^2)^{15}$
$=169^{15}$
$\equiv 4^{15} \pmod {11}$
$=4 \cdot (4^2)^7$
$=4 \cdot 8 \cdot 8^6$
$=32 \cdot (8^2)^3$
$=32 \cdot 64^3$
$\equiv 10 \cdot 9^3 \pmod {11}$
$= 10 \cdot 9 \cdot 81$
$= 90 \cdot 81$
$\equiv 2 \cdot 4 \pmod {11}$
$r=8$
(I probably should have used mod at the very start on $13^{30}$ to start with an easier base but redoing this doesn’t seem fun at all)
---
5. $a = 3^{31}$; $b = 17$
$3^{31}= 3 \cdot (3^2)^{30}$
$=3 \cdot 9^{30}$
$=3 \cdot (9^2)^{15}$
$=3 \cdot 81^{15}$
$\equiv 3 \cdot 13^{15} \pmod {17}$
$= 3 \cdot (13^2)^7$
$=3 \cdot 169^7$
$\equiv 3 \cdot 16^7 \pmod {17}$
$=3 \cdot 16 \cdot (16^2)^3$
$=48 \cdot 256^3$
$\equiv 14 \cdot 1^3 \pmod {17}$
$r=14$
### Problem 4: Divisibility (40)
1. Prove that if $3$ divides an integer $n$ with a remainder of $1$, $9$ divides $n^3$ with a remainder of $1$.
For some arbitrary $q \in Z$
$n = 3q + 1$
$3 \vert (n-1)$
$n^3 = 9q + 1$
$n^3 - 1 = 9q$
$9 \vert n^3-1$
Goal is to create: $n^3-1=9(\text{some integer stuff})$
$n^3-1=(n-1)(n^2+n+1)$
$=((3q+1)-1)((3q+1)^2+3q+1+1)$
$=(3q)(9q^2+6q+1+3q+1+1)$
$=(3q)(9q^2+9q+3)$
$=18q^2+27q^2+9q$
$n^3-1=9(2q^2+3q^2+q)$
$\therefore 9 \vert n^3 -1$
---
2. Prove that if $7$ divides an integer $n$ with a remainder of $4$, $21$ divides $3n^2$ with a remainder of $6$.
For some arbitrary $q \in Z$
$n=7q+4$
$n-4=7q$
$7 \vert (n-4)$
$3n^2=21q+6$
$3n^2-6 = 21q$
$21 \vert 3n^2-6$
Goals is to create: $3n^2-6=21(\text{some integer stuff})$
$3n^2-6= 3(7q+4)^2-6$
$=3(49q^2+28q+28q+16)-6$
$=147q^2+168q + 42$
$3n^2-6=21(7q^2+8q+2)$
$\therefore 21 \vert 3n^2-6$
---
3. Prove that if $5$ divides an integer n with a remainder of $4$, $10$ divides $2n^2+4n+3$ with a remainder of $1$.
For some arbitrary $q \in Z$
$n=5q+4$
$n-4=5q$
$5 \vert n-4$
$2n^2+4n+3=10q+1$
$2n^2+4n+2=10q$
$10 \vert 2n^2+4n+2$
Goal is to create: $2n^2+4n+2=10(\text{some integer stuff})$
$2n^2+4n+2=2(5q+4)^2+4(5q+4)+2$
$=2(25q^2+40q+16)+20q+16+2$
$=50q^2+80q+32+20q+18$
$=50q^2+100q+50$
$2n^2+4n+2=10(5q^2+10q+5)$
$\therefore 10 \vert 2n^2 + 4n +2$
---
4. Determine, with proof, any and all pairs of $(x,y)$ integers that satisfy the equation $93,411x+2844y=12,345$.
(HINT: Using common divisibility rules will be faster than the various forms of the Euclidean algorithm.)
- Use induction?