# COT 3100 - Quiz 1 *Michael Akinyemi* *Tue/Thu - 9 AM* ### Question 1: Inference (10) f = fish can fly b = birds can swim s = squirrels can talk c = capybaras can write Accepting the following premises: 1. $f \implies b$ - “If fish can fly, birds can swim” 2. $b \implies s$ - “If birds can swim, squirrels can talk” 3. $(b \land s) \implies c$ - “If birds can swim and squirrels can talk, capybaras can write” 4. $f$ - “Fish can fly” Show, using the rules of inference, that capybaras can write $ \begin{aligned} \\ \text{5. } & b && \text{Modus Ponens 1, 4} \\ \text{6. } & s && \text{Modus Ponens 2, 5} \\ \text{7. } & s \land b && \text{Conjunction 5, 6} \\ \text{8. } & c && \text{Modus Ponens 3, 7} \end{aligned}$ ### Question 2: Universal Generalization (10) Show by universal generalization that: $((A \cap C) \cup B) \cap D \subseteq (A \cap C) \cup (B \cap D)$ **Proof:** By definition of distributivity $((A \cap C) \cap D) \cup (B \cap D) \iff ((A \cap C) \cup B) \cap D$. Let some arbitrary $x \in (A \cap C) \cap D$, by definition of $\cap$, $x \in (A \cap C)$ AND $x \in D$. By definition of $\subseteq$, we have $(A \cap C) \cap D \subseteq A \cap C$. Thus, $x \in (A \cap C)$. By definition of $\cup$, if $(A \cap C) \cup (B \cap D)$ and $(A \cap C) \subseteq (A \cap C) \cup (B \cap D)$ $\therefore ((A \cap C) \cup B) \cap D \subseteq (A \cap C) \cup (B \cap D)$