# 2D Vectors ## > [!NOTE]+ **Resolving Vectors into its Components** > > $x$-component: > > $\cos \theta = \frac{A_x}{A} \Rightarrow A_x = A \cos \theta$ > > $y$-component: > > $\sin \theta = \frac{A_y}{A} \Rightarrow A_y = A \sin \theta$ > > --- > > The angle $\theta$ must be between the vector and the positive direction of the $x$-axis or $y$-axis. > > ![[medium.svg]] > > [!NOTE]+ **Finding The Angle of a 2D Vector** > Given components $A_y$ and $A_x$ of a vector quantity $A$, the direction of a vector can be found using: > $\tan \theta=\frac{A_y}{A_x}$ > or > $\theta=\tan^{-1}(\frac{A_y}{A_x})$ > >