# 2D Vectors
##
> [!NOTE]+ **Resolving Vectors into its Components**
>
> $x$-component:
>
> $\cos \theta = \frac{A_x}{A} \Rightarrow A_x = A \cos \theta$
>
> $y$-component:
>
> $\sin \theta = \frac{A_y}{A} \Rightarrow A_y = A \sin \theta$
>
> ---
>
> The angle $\theta$ must be between the vector and the positive direction of the $x$-axis or $y$-axis.
>
>
![[medium.svg]]
>
> [!NOTE]+ **Finding The Angle of a 2D Vector**
> Given components $A_y$ and $A_x$ of a vector quantity $A$, the direction of a vector can be found using:
> $\tan \theta=\frac{A_y}{A_x}$
> or
> $\theta=\tan^{-1}(\frac{A_y}{A_x})$
>
>