# Asymptotes
**Asymptotes:** Points of the function that are undefined and blow up to $\pm \infty$ before and after the asymptote's line.
![[Pasted image 20220521033847.png]]
### Vertical Asymptotes
> [!summary]+ Formal Definition
> Let $f(x)$ be a function. If any of the following conditions hold, then the line $x=a$ is a **vertical asymptote** of $f(x)$:
>
> $\lim_{x \to a^-}f(x)= \pm \infty$
> $\lim_{x \to a^+}f(x)= \pm \infty$
> $\text{or}$
> $\lim_{x \to a}f(x)= \pm \infty$
---
### Horizontal Asymptotes
> [!summary]+ Formal Definition
> a
> If x
The horizontal asymptote can be found by comparing the degree of the numerator $M$ to the degree of the denominator $N$:
- If $M < N$, then
---
### Oblique Asymptotes
> [!summary]+ Formal Definition
> 1
---
## Finding Asymptotes Without Graphing