# Factoring When you **factor** an expression you are trying to find what you would multiply to get the original expression. Example: - Ex: $x^2+ --- ## Special Factoring Cases #### Perfect-Square Trinomials A **perfect-square trinomial** is any trinomial in one of the following forms: $a^2+2ab+b^2=(a+b)(a+b)=(a+b)^2$ $a^2-2ab+b^2=(a-b)(a-b)=(a-b)^2$ #### Difference of Squares A **difference of squares** occurs if the following form is present: $a^2+b^2=(a+b)(a-b)$ > [!help] Examples > **Perfect-Square Trinomials:** > $\begin{aligned} x^2-12x+36 \\ x^2-12x+6^2 \\ x^2-2(x)(6)+6^2 && a^2-2ab+b^2\\ (x-6)^2 && (a-b)^2 \end{aligned}$ > --- > $\begin{aligned} 4x^2+20x+25 \\ (2x)^2+20x+5^2 \\ (2x)^2+2(2x)(5)+5^2 && a^2+2ab+b^2\\ (2x+5)^2 && (a+b)^2 \end{aligned}$ > --- > **Difference of Squares:** > $\begin{aligned} z^2-9 \\ z^2-3^2 \\ (z+3)(z-3) && (a+b)(a-b)\\ z^2-3z+3z-9 \end{aligned}$ > --- > $\begin{aligned} 24g^2-6 \\ 6(4g^2-1) \\ 6((2g)^2-1^2)\\ 6(2g+1)(2g-1) \end{aligned}$ --- ## Factoring by Grouping You can utilize the factoring by grouping technique when a polynomial contains four or more terms: 1. Divide the polynomial into two groups: 1st half and 2nd half. $(2x^3-10x^2)+(3x-15)$ 2. Factor the GCF (Greatest Common Factor) $2x^2(x-5)+3(x-5)$ 3. You should have a common binomial/trinomial factor $2x^2(x-5)+3(x-5)$ 4. Factor out the common binomial/trinomial factor. $(x-5)(2x^2+3)$ > [!help] Examples > $\begin{aligned} 3n^3-12n^2+2n-8 \\ (3n^3-12n)+(2n-8) \\ 3n^2(n-4)+2(n-4)\\ (n-4)(3n^2+2) \end{aligned}$ > --- > *Sometimes you can factor out a GCF in the entire expression before the first step to make the process simpler:* > $\begin{aligned} 4q^4-8q^3-12q^2+24q \\ 4q((q^3-2q^2)+(-3q+6)) \\ 4q(q^2(q-2)-3(q-2))\\ 4q(q-2)(q^2-3) \end{aligned}$ ---