# Hyperbolic Trigonometric Functions
**Hyperbolic Functions** are similar to the basic trigonometric functions, however they are related to the *hyperbolic curve* as opposed to the *unit circle*.
These functions are defined in terms of $e^x$ and $e^{-x}$.
| Function | Formula |
| ----------------------------- | ----------------------------------------------------------------- |
| Hyperbolic Cosine ($cosh$) | $cosh(x)=\frac{e^x+e^{-x}}{2}$ |
| Hyperbolic Sine ($sinh$) | $sinh(x)=\frac{e^x-e^{-x}}{2}$ |
| Hyperbolic Tangent ($tanh$) | $tanh(x)=\frac{sinh(x)}{cosh(x)}=\frac{e^x-e^{-x}}{e^x+e^{-x}}$ |
| Function | Formula |
| ----------------------------- | ----------------------------------------------------------------- |
| Hyperbolic Cosecant ($csch$) | $csch(x)=\frac{1}{sinh(x)}=\frac{2}{e^x-e^{-x}}$ |
| Hyperbolic Secant ($sech$) | $sech(x)=\frac{1}{cosh(x)}=\frac{2}{e^x+e^{-x}}$ |
| Hyperbolic Cotangent ($coth$) | $tanh(x)=\frac{cosh(x)}{sinh(x)}=\frac{e^x+e^{-x}}{e^x-e^{-x}}$ |
## Inverse Hyperbolic Functions
This is a sentence[^todo]
[^todo]: This is the exmpalnation of the footnote