> See also:
> - [[Notes/Trigonometry]]
# Inverse Trigonometric Functions
Only one-to-one functions can have an inverse. Review [[Domain and Range]] and functions to understand why.
You must restrict the domain of certain trigonometric functions to find their inverse form.
> If you use a calculator to graph an ivnerse trig function you will notice that its domain and range are limited.
> - **Ex:** $sin^{-1}(x)$
## Proofs of Inverse Trig Functions
> [!check] Proving the Inverse of $sinh(x)$
>
---
## Solving Equations Using Inverse Trig Functions
> [!help] Examples
> $\begin{aligned}
(\sqrt{3}) tan(x)+1=0 \\
(\sqrt{3}) tan(x)=-1 \\
tan(x)=-\frac{1}{\sqrt{3}}\\
x=tan^{-1}(-\frac{1}{\sqrt{3}})
\end{aligned}$
> ---
> $\begin{aligned}
3sin(6x)=2 \\
sin(6x)=\frac{2}{3} \\
6x=sin^{-1}(\frac{2}{3}) \\
x=\frac{sin^{-1}(\frac{2}{3})}{6}
\end{aligned}$