![[TrigUnitCircleFunctions.gif|500]]
![[Basic Trig Functions Graphic.png|150]]
# Trigonometry
## The Unit Circle
> See also:
> - [[Angles]]
> [!NOTE]- The Unit Circle
>
> ![[Pasted image 20220520163124.png|425]]
>
[Visualization of Trig Functions on Unit Circle](https://www.geogebra.org/m/keqhdkaj)
### Angles Greater Than 90°
## Trigonometric Functions
- [ ] What do trigonometric functions represent?
- [ ] Why do we use the unit circle?
- [ ] When is it beneficial to treat the trig functions as ratios rather than their unit circle definitions?
### Sine & Cosine
![[Trigonometric Functions.png|475]]
**From this, we can make several conclusions:**
The point $(x,y)$ is equal to $(\cos \theta, \sin \theta)$
Using the pythagorean theorem, we see that:
$sin^2(\theta)+cos^2(\theta) = 1^2$
### Tangent & Secant
It’s important to recognize the difference between the [[Tangent and Secant Lines]] and their corresponding trigonometric functions.
![[Tan Graphs.gif|325]]
### Cotangent & Cosecant
## Trigonometric Ratios
*Specifically in right-triangles*, the trig functions may correspond to the ratios of the side lengths present.
Because we’re working with triangles, there are only three “options” throughout these various ratios: **opposite**, **adjacent**, and **hypotenuse**.
using basic properties of division/fractions, one value can be cancelled out when any one of these functions are divided by another (in a different one of the three sets)
$sinA=\frac a c = \frac {opposite} {hypotenuse}$
$cscA=\frac c a = \frac {hypotenuse} {opposite}$
---
$cos A=\frac b c = \frac {adjacent} {hypotenuse}$
$secA=\frac c b = \frac {hypotenuse} {adjacent}$
---
$tanA=\frac a b = \frac {opposite} {adjacent}$
$cotA=\frac b a = \frac {adjacent} {opposite}$
> The phrase "SOH - CAH - TOA" is a useful mnemonic device for remembering the three main trigonometric functions.
> [!attention] When Can We Use These Ratios?
>
> Remember that a [[Triangles#Right Triangles|hypotenuse]] isn’t just any random side, it’s specifically the side opposite to the right angle of a triangle.
### Scale Invariance of the Trigonometric Functions
## Properties of Trigonometric Functions
### Period, Amplitude, and Frequency
https://en.wikibooks.org/wiki/Trigonometry/Phase_and_Frequency
### Periodic Properties
![[Pasted image 20220521034030.png|300]]
## Trigonometric Identities
### Pythagorean Identities
![[Pasted image 20220521211212.png|400]]
$1+cot^2(\theta)=csc^2(\theta)$
$1+tan^2(\theta)=sec^2(\theta)$
### Even-Odd Identities
$tan(-\theta)=-tan(\theta)$
$cot(-\theta)=-tan(\theta)$
$sin(-\theta)=-sin(\theta)$
$csc(-\theta)=-csc(\theta)$
$cos(-\theta)=-cos(\theta)$
$sec(-\theta)=-sec(\theta)$